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1-1. Space Information Flow: The Problem

Space Information Flow:

e Transmit information flows in space to satisty
end-to-end (unicast/multicast) communication
demands among terminals at known coordinates

e Minimize > _(f.||e]|)
— e: a ‘link” employed by the flow {
— f.: flow rate at e

— |le]|: length of e



1-2. Space Information Flow: Unicast Example

1 bps each link

e Unicast demand: A—B, 1 bps
o Cost: (2m+2m)x 1 bit/sec = 4 bit - meter/sec



1-3. Space Information Flow: Unicast Example

1 bps each link

e Unicast demand: A—B, 1 bps
o Cost: (2v/2m)x(1bit/sec) = 2.828 bit - meter/sec



1-4. Space Information Flow: Multicast Example

A

0.5 bps each link

e Multicast demand among terminal (black) nodes;
1 bps

e Cost: (2m)x(0.5bit/sec)x9 =9 bit - meter/sec



1-5. Space Information Flow: Multicast Example

1 bps each link

e Multicast demand among terminal (black) nodes;
1 bps

e Cost: (2m)x (1 bit/sec)x3 =6 bit - meter/sec



1-6. The (Geometric) Steiner Tree Problem

Gauss, 1836: how can a railway network of minimal
length which connects the four German cities Bremen,

Hamburg, Hannover, and Braunschweig be created?
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1-6. The Steiner Tree Problem

Gauss, 1836: how can a railway network of minimal
length which connects the four German cities Bremen,
Hamburg, Hannover, and Braunschweig be created?
E -
) v )
A "‘H}

o |
3,

5/



1-6. The Steiner Tree Problem

Gauss, 1836: how can a railway network of minimal
length which connects the four German cities Bremen,

Hamburg, Hannover, and Braunschweig be created?
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1-6. The Steiner Tree Problem

Gauss, 1836: how can a railway network of minimal
length which connects the four German cities Bremen,

Hamburg, Hannover, and Braunschweig be created?
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1.7. Space Information Flow vs. Steiner Tree

e SIF allows fractional flow rates
— Steiner tree (implicit): each link has flow rate
1.0
e SIF allows information encoding (network coding)
— Steiner tree: can model replication, but no

coding

e SIF allows multiple sessions (with inter-session
coding)
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2-1. Network Coding vs. Routing

The space model represents the ‘fairest’ paradigm for
comparing network coding and routing.

e Directed networks: contrived, tailored network topol-
ogy and orientation favoring network coding

e Undirected networks: contrived, tailored network
topology tavoring network coding

e Space: network coding and routing are each free to
design its own network topology and choose its own
network orientation
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2-2. Network Coding vs. Routing

The space model represents the ‘fairest’ paradigm for
comparing network coding and routing.

directed undirected | space

networks networks
multiple 00 conjectured: | =1
unicast Q(n) =1

00 <2 < 1.155 (2-D)
multicast | Q(y/n) > 8/7 > a € (1,1.022)
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2-3. Information Network Design

X2‘

-

2

-1
0

e A space information flow f can be viewed as a blue
print for constructing an information network

e A link ein f — acommunication cable to be laid

e Link flow rate f. — bandwidth capacity of the
cable

e The longer the cable, the more expensive

e The wider the cable, tge more expensive
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3-1. Network Information Flow: Two Unicast

(A) each link flow rate is 1.0 (B) each link flow rate is 0.5
S1 4 n S2 S1 a1 . S2
—+0—"0@ O06—0——0
a atb b a2 \ lbl alj lbz
a+b a+b az N 2
O~ O = —0O—0

ts (1 2 t1
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3-2. The Multiple Unicast Conjecture

Throughput domain: For k independent unicast ses-
stons in a capacitated undirected network (G,c), a
throughput vector r s feasible with network coding if and
only if 1t 1s feasible with routing.

0

Cost domain: Let £ be the underlying flow vector of
a network coding solution for k independent unicast ses-
sions with throughput vector r, in a cost-weighted undi-
rected network (G,w). Then >  wef. > > .d;r;, where
d; is the shortest path distance between the sender and
receiver of session 1 under metric w.
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3-3. Multiple Unicast in Space: The Problem
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What'’s the best solution for three unicast: A — B,

A — C, B — D, each with unit throughput
demand?
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3-4. Multiple Unicast in Space: The Problem

Cost = Z r;d;

(

Is optimal cost without network coding still optimal
with network coding?
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3-5. Multiple Unicast in Space: The Theorem

Theorem. For multiple unicast in space, network

coding 1s equivalent to routing.

We prove the cost version of the multiple unicast
conjecture m space.

Prove Zfe||e|| > Zridi

f: the underlying flow vector of a network coding
solution.
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3-6. Multiple Unicast in 1-D Space

{2

S1 ' S3 t3
M) o 1 - [\
\/ N 1 Ao \/
:XO
Throughput demand:
® S| — 1. Iy
® So — l9: I'y

® S3 — 01: I'3

1§
N\ -
A4

To prove: p_ (|leflife) = >_,([[sitil[1r:).
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3-7. Multiple Unicast in 1-D Space

S1 t2 . S3 t3 t1
7\ N, 1 /N /\ M\ N
U/ N N N/ N\

' Xo

f., > Demand((—o0, ) < (29, 00))

=TIy +7TI9
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3-8. Multiple Unicast in 1-D Space

S
<"z >
X

t2 . S3 s t
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/ f.dx > / Demand((—o0, x) < (x,00))dx

— — O

LFH =3 (|lellf.)

RHS = Z ||Sﬂfz||1l‘Z

Therefore: > _(|le]|ife) > D> (]]siti]|iri)-
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3-9. Multiple Unicast in A-D Space

To prove: Y (f.|lel[n) = >_,(||siti]|nri)

Assume, b.w.o.c.: Y (£|lelln) < D :(||siti|[nri)

Find a unit 1-D vector ]_5, s.t.:

Contradiction with result in 1-D.
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3-10: Multiple Unicast in h-D Space

Challenge: ; is hard to find!

Idea: enumerate all possible ]_5, by integrating over .
Prove:

ﬁiZ(fe‘e;qu) < ﬁQZ(‘ Sz—%z f?}\rz)d@

D
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3-11. Multiple Unicast in h-D Space

H S twle - shae = 3 ] tle- plae
d — JJo
—
= [ elell 1-pde
o d
- =
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3-12. Multiple Unicast in h-D Space

ﬂZ p)rid® = Zﬂ\st p|dD

.
= Zﬂ(“sztz"h‘ 1 -p|)rdd = Z(Hsztz"hrz)ﬂ@’ 1 -p|ld®

By assumption: > (£|le|ln) < D _:(||siti||nrs)

We claim:

ﬁiZ(fe‘ez‘)dq) < ﬁQZ(‘ Sz—%z f?}\rz)d@
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3-13. Multiple Unicast in h-D Space

We claim:

ﬁiZ(fe‘ez‘)d@ < ﬁQZ(‘ Sz—%z ]_;‘I'Z)d(b

There must exist at least one particular }_;, such that:

D (e~ ) < D (| siti -Blr)
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3-14. Multiple Unicast: Network vs. Space

e [sometric (distance-perserving) embedding of
oraph metric?

e Low-distortion embedding of graph metric?

e Using a Kuclidean or non-Euclidean geometry
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4-1. Multicast in Space

Is an optimal multicast
solution in space always
a multicast tree 7
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4-2. Multicast in Space

Is an optimal multicast solution in space al-
ways a multicast tree? — No!

receivers

sources
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4-3. Multicast in Space

Open problems:

e What is the computational complexity of the

optimal multicast problem in space? PP/ NP-
hard?

e [s this pattern minimum?

receivers

sources
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4-4. Multicasting 2 Flows in Space

Theorem. Multicasting 2 flows: cost advantage ot

network coding < the Steiner ratio

e cost advantage: the ratio of: min multicast tree
cost over min multicast cost with network coding

e Steiner ratio: the ratio of: min spanning tree cost
over min Steiner tree cost

e The Gilbert-Pollak Conjecture: the Steiner ratio

n 2-D 1s at most N 1.155.
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4-5. Multicasting 2 Flows in Space

e Multicast flow decomposition
e Replace each component with a local spanning tree

e Resulting network is essentially a broadcast network

a+2b® a+2b
a+2b




4-6. Bipartite Multicast Flow Structure

Theorem. Network coding solution has a bipartite

structure: cost advantage of network coding <
1.155 (unconditional).
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4-7. Bipartite Multicast Flow Structure

S
X y X+2y
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4.8. Multicast in Planar Networks

Outer-planar (all nodes on same face):
Network Coding = Routing

/
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4.9. Multicast in Planar Networks

Terminals on Same Face: GF(2) Sufficient?

S

42



Talk Outline

1. Space

nformation I

2. Space |

v

nformation I

L4

—

low 1n a NutShell

—

low: Motivation

3. Multiple Unicast in Space

4. Multicast in Space

5. Conclusion and Open Problems

43



5-1. Conclusion

Introduced the space information flow problem
SIF' models information network design

Proved the multiple unicast conjecture in space

Proved upper-bounds for benefits of multicast
network coding in space

44



5-2. Open Problems for Space Information Flow

. Optimal multicast in space: complexity, eflicient

algorithm design

. Extend upper-bound analysis for multicast coding

advantage in space

. Wireless information flow in space, wireless net-

work design
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THE END
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