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1-1. Space Information Flow: The Problem

Space Information Flow:

• Transmit information flows in space to satisfy

end-to-end (unicast/multicast) communication

demands among terminals at known coordinates

• Minimize
∑

e(f e||e||)
– e: a ‘link’ employed by the flow f

– fe: flow rate at e

– ||e||: length of e
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1-2. Space Information Flow: Unicast Example
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1 bps each link

• Unicast demand: A→B, 1 bps

• Cost: (2m+2m)×1 bit/sec = 4 bit ·meter/sec
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1-3. Space Information Flow: Unicast Example
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1 bps each link

• Unicast demand: A→B, 1 bps

• Cost: (2
√
2m)×(1 bit/sec) = 2.828 bit ·meter/sec
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1-4. Space Information Flow: Multicast Example
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0.5 bps each link

• Multicast demand among terminal (black) nodes,

1 bps

• Cost: (2m)×(0.5 bit/sec)×9 = 9 bit ·meter/sec
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1-5. Space Information Flow: Multicast Example
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1 bps each link

• Multicast demand among terminal (black) nodes,

1 bps

• Cost: (2m)×(1 bit/sec)×3 = 6 bit ·meter/sec
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1-6. The (Geometric) Steiner Tree Problem

Gauss, 1836: how can a railway network of minimal

length which connects the four German cities Bremen,

Hamburg, Hannover, and Braunschweig be created?
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1.7. Space Information Flow vs. Steiner Tree

• SIF allows fractional flow rates

– Steiner tree (implicit): each link has flow rate

1.0

• SIF allows information encoding (network coding)

– Steiner tree: can model replication, but no

coding

• SIF allows multiple sessions (with inter-session

coding)
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2-1. Network Coding vs. Routing

The space model represents the ‘fairest’ paradigm for
comparing network coding and routing.

• Directed networks: contrived, tailored network topol-
ogy and orientation favoring network coding

• Undirected networks: contrived, tailored network

topology favoring network coding

• Space: network coding and routing are each free to
design its own network topology and choose its own

network orientation
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2-2. Network Coding vs. Routing

The space model represents the ‘fairest’ paradigm for
comparing network coding and routing.

directed undirected space

networks networks

multiple ∞ conjectured: ≡ 1

unicast Ω(n) ≡ 1

∞ ≤ 2 ≤ 1.155 (2-D)

multicast Ω(
√
n) ≥ 8/7 ≥ α ∈ (1, 1.022)
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2-3. Information Network Design
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0.5 bps each link

• A space information flow f can be viewed as a blue

print for constructing an information network

• A link e in f — a communication cable to be laid

• Link flow rate fe — bandwidth capacity of the

cable

• The longer the cable, the more expensive

• The wider the cable, the more expensive
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3-1. Network Information Flow: Two Unicast
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3-2. The Multiple Unicast Conjecture

Throughput domain: For k independent unicast ses-

sions in a capacitated undirected network (G, c), a

throughput vector r is feasible with network coding if and

only if it is feasible with routing.

m
Cost domain: Let f be the underlying flow vector of

a network coding solution for k independent unicast ses-

sions with throughput vector r, in a cost-weighted undi-

rected network (G,w). Then
∑

e
wefe ≥ ∑

i
diri, where

di is the shortest path distance between the sender and

receiver of session i under metric w.
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3-3. Multiple Unicast in Space: The Problem
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What’s the best solution for three unicast: A → B,
A → C, B → D, each with unit throughput
demand?
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3-4. Multiple Unicast in Space: The Problem
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Cost =
∑
i

ridi

Is optimal cost without network coding still optimal
with network coding?
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3-5. Multiple Unicast in Space: The Theorem

Theorem. For multiple unicast in space, network

coding is equivalent to routing.

We prove the cost version of the multiple unicast

conjecture in space.

Prove :
∑
e

fe||e|| ≥
∑
i

ridi

f : the underlying flow vector of a network coding
solution.
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3-6. Multiple Unicast in 1-D Space

s1 s2s3 t1t2 t3

x0 x

Throughput demand:

• s1 → t1: r1

• s2 → t2: r2

• s3 → t1: r3

To prove:
∑

e(||e||1fe) ≥
∑

i(||siti||1ri).
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3-7. Multiple Unicast in 1-D Space

s1 s2s3 t1t2 t3

x0 x

fx0 ≥ Demand((−∞, x0) ↔ (x0,∞))

= r1 + r2
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3-8. Multiple Unicast in 1-D Space

s1 s2s3 t1t2 t3

x0 x

∫ ∞

x=−∞
fxdx ≥

∫ ∞

x=−∞
Demand((−∞, x) ↔ (x,∞))dx

LFH =
∑
e

(||e||1fe)

RHS =
∑
i

||siti||1ri

Therefore:
∑

e(||e||1fe) ≥
∑

i(||siti||1ri).
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3-9. Multiple Unicast in h-D Space

To prove:
∑

e(fe||e||h) ≥
∑

i(||siti||hri)

Assume, b.w.o.c.:
∑

e(fe||e||h) <
∑

i(||siti||hri)

Find a unit 1-D vector
→
p , s.t.:∑

e

(fe|e·
→
p |) <

∑
i

(|
→
siti ·

→
p |ri)

Contradiction with result in 1-D.
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3-10: Multiple Unicast in h-D Space

Challenge:
→
p is hard to find!

Idea: enumerate all possible
→
p , by integrating over Φ.

Prove: ∫
�
�

�
�

∫
Φ

∑
e

(fe|e ·
→
p |)dΦ <

∫
�
�

�
�

∫
Φ

∑
i

(|
→
siti ·

→
p |ri)dΦ

p
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3-11. Multiple Unicast in h-D Space
∫
�
�

�
�

∫
Φ

∑
e

(fe|e ·
→
p |)dΦ =1

∑
e

∫
�
�

�
�

∫
Φ

fe|e ·
→
p |dΦ

=2

∑
e

∫
�
�

�
�

∫
Φ

fe||e||h|
→
1 ·→p |dΦ

=3

∑
e

(fe||e||h)
∫
�
�
�
�

∫
Φ

|
→
1 ·→p |dΦ
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3-12. Multiple Unicast in h-D Space
∫
�
�

�
�

∫
Φ

∑
i

(
→
siti ·

→
p)ridΦ =

∑
i

∫
�
�
�
�

∫
Φ

|
→
siti ·

→
p |dΦ

=
∑
e

∫
�
�

�
�

∫
(||siti||h|

→
1 ·→p |)ridΦ =

∑
i

(||siti||hri)
∫
�
�
�
�

∫
Φ

|
→
1 ·→p |dΦ

By assumption:
∑

e
(fe||e||h) <

∑
i
(||siti||hri)

We claim:∫
�
�

�
�

∫
Φ

∑
e

(fe|e ·
→
p |)dΦ <

∫
�
�

�
�

∫
Φ

∑
i

(|
→
siti ·

→
p |ri)dΦ
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3-13. Multiple Unicast in h-D Space

We claim:∫
�
�

�
�

∫
Φ

∑
e

(fe|e ·
→
p |)dΦ <

∫
�
�

�
�

∫
Φ

∑
i

(|
→
siti ·

→
p |ri)dΦ

There must exist at least one particular
→
p , such that:∑

e

(fe|e ·
→
p |) <

∑
i

(|
→
siti ·

→
p |ri)
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3-14. Multiple Unicast: Network vs. Space

• Isometric (distance-perserving) embedding of

graph metric?

• Low-distortion embedding of graph metric?

• Using a Euclidean or non-Euclidean geometry
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4-1. Multicast in Space

Is an optimal multicast

solution in space always

a multicast tree ?
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4-2. Multicast in Space

Is an optimal multicast solution in space al-

ways a multicast tree? — No!

sources
receivers
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4-3. Multicast in Space

Open problems:

• What is the computational complexity of the

optimal multicast problem in space? P? NP-

hard?

• Is this pattern minimum?

sources
receivers
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4-4. Multicasting 2 Flows in Space

Theorem. Multicasting 2 flows: cost advantage of

network coding ≤ the Steiner ratio

• cost advantage: the ratio of: min multicast tree

cost over min multicast cost with network coding

• Steiner ratio: the ratio of: min spanning tree cost

over min Steiner tree cost

• The Gilbert-Pollak Conjecture: the Steiner ratio

in 2-D is at most 2√
3
= 1.155.
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4-5. Multicasting 2 Flows in Space

• Multicast flow decomposition

• Replace each component with a local spanning tree

• Resulting network is essentially a broadcast network
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4-6. Bipartite Multicast Flow Structure

Theorem. Network coding solution has a bipartite

structure: cost advantage of network coding ≤
1.155 (unconditional).
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4-7. Bipartite Multicast Flow Structure
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4.8. Multicast in Planar Networks

Outer-planar (all nodes on same face):

Network Coding = Routing
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4.9. Multicast in Planar Networks

Terminals on Same Face: GF (2) Sufficient?
S
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5-1. Conclusion

• Introduced the space information flow problem

• SIF models information network design

• Proved the multiple unicast conjecture in space

• Proved upper-bounds for benefits of multicast

network coding in space
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5-2. Open Problems for Space Information Flow

1. Optimal multicast in space: complexity, efficient

algorithm design

2. Extend upper-bound analysis for multicast coding

advantage in space

3. Wireless information flow in space, wireless net-

work design

4. Multiple unicast, embedding?

5. Multicast in planar networks: small fields suffice?
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